Reliability and Validity of the Occupational Therapy Attribute Scale

Sandra Hubbard, PhD, OTR
Alison Beck, PhD, OTR
Patricia Stutz-Tanenbaum, OTR
Carmela Battaglia, PhD, OTR

The Occupational Therapy Attribute Scale (OTAS) was developed as a systematic, valid, and reliable tool for use as a formative and summative assessment of occupational therapy (OT) student professional behavior during level II fieldwork. The purpose of this study was to investigate the validity and reliability of the OTAS as a summative assessment for level II fieldwork. Items were created by OT clinical educators during focus groups. Internal consistency (reliability) was tested using Cronbach's α. The resulting Fieldwork Evaluation coefficients ranged from 0.98 to 0.99. OTAS coefficients ranged from 0.90 to 0.96. A principal component exploratory factor analysis with varimax rotation yielded three factors: judgment/clinical reasoning, professional communication, and organization and time management. Internal construct validity was tested using Pearson correlation; the results indicated a strong (r = 0.74) degree of consistency between the Fieldwork Evaluation, the gold standard, and the OTAS. The sensitivity of the OTAS was 0.94, suggesting that the OTAS is able to identify OT students who would be hired. The authors conclude that the OTAS is a reliable and valid measure of professional behavior of OT students on level II fieldwork. J Allied Health 2007; 36:193-200.

The transition from classroom to clinic can be problematic for occupational therapy (OT) students. One of the reasons for this difficulty is that students often grapple with the identification and adoption of appropriate professional behavior. The importance of the development of professional behavior was noted as early as 1927 in a report by the American Occupational Therapy Association (AOTA) Committee on Teaching Methods: "The step from the school to the hospital is sudden one. The atmosphere and routine of the two are totally unlike... Personal lack of ability to adjust themselves to the patients and the hospital is one of the outstanding difficulties with students." Typically, students who fail to make a smooth transition from classroom to clinic demonstrate difficulty in the area of professional behavior rather than in the performance of psychomotor skills.

OT students complete a minimum of two level II fieldworks that provide a mentored transition from classroom to clinic. Fieldwork provides OT students with opportunities to both apply knowledge and be socialized into the profession. Personal and professional growth must occur in addition to mastery of knowledge and practice skill. More specifically, Fidler outlined the following areas that should be maximized during fieldwork: self-concept, and personal identity, self-awareness, self-understanding, receptivity to learning and growth, flexibility, objectivity and judgment, interpersonal relationships, communication skills, problem-solving and decision-making skills, observational and evaluative skills, treatment planning and implementation skills, and group process skills.

Kasar et al. developed a model of OT professional behaviors based on the assumption that professional behaviors are not innate but rather must be developed. The model identifies 10 OT professional behaviors (dependability, professional presentation, initiative, empathy, cooperation, organization, clinical reasoning, and supervisory process, verbal, and written communication) and the sequence through which OT students can be nurtured to successfully develop these behaviors. Similarly, important abilities have been identified by physical therapy (PT) clinical educators: commitment to learning, interpersonal skills, communication skills, effective use of time and resources, use of constructive feedback, problem solving, professionalism, responsibility, critical thinking, and stress management. Professional behaviors identified as important by PT practitioners in Canada include communication, adherence to legal and ethical codes of practice, respect, sensitive practice, lifelong learning, evidence-
based practice, client-centered practice, critical thinking, accountability, and professional image. Using a case study approach, Kramer and Sterm found that students who do not accept responsibility for their behavior and who do not respond well to feedback are the students who are more likely to have problems during fieldwork.

The Occupational Therapy Attribute Scale (OTAS) was developed as a systematic, valid, and reliable tool that could be used as both a formative and a summative assessment of OT student professional behavior during level II fieldwork. The OTAS was developed by clinical educators in South Texas as a supplement to the Fieldwork Evaluation (FWE), implemented by the AOTA in 1987. Many South Texas clinical educators believed having a tool that provided a framework from which to administer feedback to students (i.e., a remediation or counseling tool) would improve their success as clinical educators.

The purpose of this study was to investigate the validity and reliability of use of the OTAS as a summative assessment for level II fieldwork. Future studies will look at the validity and reliability of use of the OTAS as a formative assessment. This study was completed in two phases. During phase I (1999–2001), OTAS items were generated for a pilot version of the OTAS. OT clinical educators in South Texas. A pilot version of the OTAS was created, and reliability and validity were assessed. A factor analysis performed as a test of construct validity in phase I provided the structure and construct categories to create the final version of the OTAS. During phase II (2002–2004), the reliability and validity of the final version of the OTAS were tested.

Methods

ITEM GENERATION

Three focus groups of OT fieldwork educators were convened in Texas (two in San Antonio [n = 41] and n = 18) and one in Corpus Christi (n = 16) to gather assessment criteria. The supervisors voiced qualities they believed were important to the success of the students as well as qualities that contributed to their failure. These qualities, surprisingly similar across the three groups, were compiled in random order for the first version of the OTAS.

PARTICIPANTS

Phase I

Participants were OT students on level II fieldwork (n = 178) representing 19 U.S. academic programs in six states (Colorado, New Mexico, Florida, Massachusetts, Wisconsin, and Washington). Fifty-three (30%) of the participants were on their first level II rotation, 108 (61%) were on their second level II rotation, and 14 (8%) were on their third level II rotation.

Phase II

Participants were OT students on level II fieldwork (n = 44) representing two academic programs, one in Colorado and the other in Pennsylvania. Nineteen (43%) of the student participants were on their first level II rotation, 21 (48%) were on their second level II rotation, 3 (6%) were on their third level II rotation, and 1 was undetermined. Both phases used convenience sampling; students were recruited from academic programs willing to participate.

PROCEDURE

Phase I

The procedure for phase I was as follows: (1) assessment criteria were gathered, (2) the qualities expressed during the focus groups were consolidated in random order into a 45-item pilot version, and (3) participants were recruited and an investigation of reliability and validity was conducted.

Dr. Hubbard, principal investigator, contacted academic fieldwork coordinators and solicited participation from clinical educators and OT students. Interested clinical educators recruited OT students. Packets containing the OTAS were mailed to participating clinical education sites with instructions that the OTAS be completed by two raters, that is, the supervising OT and a clinician who had contact with the student (occupational therapist, certified occupational therapy assistant, physical therapist, or speech-language pathologist). Disciplines of the second raters were as follows: occupational therapist, 53%; certified occupational therapy assistant, 14%; physical therapist, 8%; speech-language pathologist, 7%; and discipline not indicated, 19%. In addition, a copy of the student’s AOTA FWE was requested. (The FWE has since been replaced by the Fieldwork Performance Evaluation.) Participation rate overall was approximately 30% of OT students placed at participating fieldwork sites.

Phase II

Based on the factor analysis performed on phase I data, revisions were made to the pilot version of the OTAS. The factor analysis identified 16 pilot items with a correlation of less than r = 0.60 that were taken back to the focus groups for review. Two of these items were deleted on the basis that they were redundant. The focus group agreed that the remaining 14 items were important but had low correlation values because they loaded on two factors rather than on one. These 14 items were rewritten to better reflect the construct as originally intended by the members of the focus group.

The factor analysis also generated four subscales that were labeled by the investigators as (1) judgment and clinical reasoning, (2) professional communication, (3) organization and time management, and (4) miscellaneous. The OTAS items were placed in the appropriate subscales, and a second reliability and validity study was performed.
The revised and final OTAS was mailed to participating sites at approximately week 6-7 of the 12-week fieldwork. Clinical educators were instructed to complete the OTAS no later than week 9 and immediately return it to the investigators. As soon as the first OTAS was received, a second OTAS was mailed to ensure the rater would not complete both forms at the same time because this would defeat the purpose of the test and retest. Follow-up telephone calls were made as needed. At week 13, one week after the student had completed the fieldwork assignment, the principal investigator contacted the supervising clinical educator by telephone, explaining that she had no information on the identity of the student but would like to ask one question and wanted only a "yes" or "no" response. Clinical educators were expecting this telephone call, per instructions provided during recruitment, but did not know what the question would be. The question was, "If you had an opening at your facility, would you hire this student?" Because knowledge of this question before scoring the OTAS could potentially bias the score, clinical educators could participate in phase II only one time. Students, however, could participate in phase II for more than one fieldwork because there was no potential bias; this was a blinded situation. The principal investigator did not know the identity of the student she was inquiring about, and the OT student had already completed the fieldwork and the OTAS had already been scored and submitted.

PHASE I ANALYSIS

Analysis 1-1: Reliability

Cronbach's α correlation procedure was used to generate a coefficient of internal consistency, a measure of the reliability of both the FWE and the OTAS scores for this sample of level II OT students. The purpose of the Cronbach's α was to provide an estimate of how consistent the performance of examinees was across all the items. All three scales of the FWE and three scales of the OTAS were included in the analysis; the miscellaneous category was excluded. Only participants with complete OTAS and FWE data were included (n = 52).

Analysis 1-2: Content and Consequential Aspects of Construct Validity

A principal components exploratory factor analysis was performed as a means of analyzing the interrelationships between the data to find which items fit together as a construct and to identify which items were not useful to the test. The cutoff point chosen was 0.60; items with a correlation value less than 0.60 were excluded from the construct cluster. A varimax rotation was then performed as a confirmatory factor analysis. The excluded items were reviewed by the focus groups to examine why they did not correlate with the clusters. Participants with complete OTAS data were included (n = 154).

Analysis 1-3: External Aspect of Construct Validity

Pearson correlation procedure was used to externally substantiate the degree of consistency between the OTAS pilot subscales identified in analysis 1-2 and the FWE subscales, the gold standard. Participants with complete OTAS and FWE data were included (n = 52).

Analysis 1-4: Percent Agreement of Two Raters

A k statistic was used to measure the extent to which two raters agreed on a student's overall performance. Only those participants with OTAS forms completed by two clinician raters were included (n = 36).

PHASE II ANALYSIS

Analysis 2-1: Reliability

Cronbach's α performed in phase I was repeated for phase II on the OTAS only because revisions were made on the OTAS but not the FWE. The 9-week and 11-week observations for the 44 participants with complete OTAS data were included (n = 88).

Analysis 2-2: Test-Retest Reliability

Test-retest reliability was used in phase II to determine the consistency of scoring the OTAS by clinical educators. Using one rater, the OT clinical supervisor rated the student at two different times, at approximately week 9 and week 11. All efforts were made to complete these ratings as close together as possible without the rater having both OTAS forms in front of them at the same time. Weeks 9 and 11 were chosen because they were closest to the end of the fieldwork, when the learning curve was flatter and less likely to be assumed to be less vigorous than earlier in the fieldwork. Pearson correlation and paired t tests were used to analyze test and retest. The 9-week and 11-week observations for the 44 participants with complete OTAS data were included (n = 88).

Analysis 2-3: Content and Consequential Aspects of Construct Validity

This analysis addresses an aspect of validity described by Messick where an assessment should fit the social consequence. The social consequence of completion of OT education and level II fieldwork is the capacity to practice safe, ethical, entry-level OT. According to Messick, an important aspect of validity of the OTAS is its ability to identify OT students capable of safe, ethical, entry-level OT practice. To measure construct validity in phase II, clinical educators were asked, "If you had an opening at your facility, would you hire this student?" See the Procedure section of this article for further information on posing this question. To track responses, a 2 × 2 table was created. The columns
TABLE I. Reliability Results for Phase I and Phase II Using Cronbach’s α as a Measure of Internal Consistency

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Items</td>
<td>α</td>
</tr>
<tr>
<td>Fieldwork Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>46</td>
<td>0.98</td>
</tr>
<tr>
<td>Judgment</td>
<td>48</td>
<td>0.98</td>
</tr>
<tr>
<td>Attitude</td>
<td>51</td>
<td>0.99</td>
</tr>
<tr>
<td>OTAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judgment</td>
<td>12</td>
<td>0.94</td>
</tr>
<tr>
<td>Professional communication</td>
<td>12</td>
<td>0.94</td>
</tr>
<tr>
<td>Time management</td>
<td>5</td>
<td>0.86</td>
</tr>
</tbody>
</table>

represented whether the supervisor would hire the student (1 = yes, 0 = no), and the rows represented whether the supervisor gave the student a passing score (1 = yes, 0 = no). This 2 × 2 table was then used to calculate true positives (passed and would be hired), true negatives (failed and would not be hired), false positives (passed and would not be hired), and false negatives (failed and would be hired) (n = 43).

External aspect of construct validity was not performed in phase II because a strong relationship between the OTAS and FWE was demonstrated in phase I.

Results

PHASE I

Analysis 1-1: Reliability

Cronbach’s α coefficients calculated for each scale of the FWE and the OTAS indicated strong correlations, suggesting participant performance was consistent across the items; thus, performance would likely generalize to other items within this domain. The Cronbach’s α coefficients ranged from 0.98 to 0.99 for the FWE and 0.86 to 0.94 for the OTAS. See Table 1 for actual α coefficients for phase I and phase II.

Analysis 1-2: Content and Consequential Aspects of Construct Validity

A principal components exploratory factor analysis yielded six factors with eigenvalues greater than 1.0. A varimax rotation was performed, reducing the six factors to three. The three factors or clusters were designated as the constructs of (1) judgment/clinical reasoning, (2) professional communication, and (3) organization and time management by the expert opinion of the investigators and authors of this study.

For the purpose of the OTAS and according to the results of the factor analysis, judgment and clinical reasoning are measuring the same construct. Items that clustered with judgment/clinical reasoning were relevant to “thinking on one’s feet,” “switching gears,” self-assessment, interpreting cues, seeking assistance, integrating theory, knowledge and problem solving, creativity, team participation, writing skills, confidence, and adjusting treatment. Wording of the OTAS items was not changed from the language presented during the focus groups (e.g., “thinking on one’s feet” and “switching gears”), because this is the terminology used in the field.

Items that clustered with professional communication were relevant to rapport, respect, responses to ethical dilemmas, need to be flexible, confidentiality, sensitivity, and empathy. Items that clustered with time management were relevant to organization, preparation, and punctuality. Items that did not cluster in one of these three constructs were included in a miscellaneous category.

Analysis 1-3: External Aspect of Construct Validity

A Pearson correlation between the OTAS pilot and the FWE had a strong correlation overall (r = 0.74), indicating the OTAS and the FWE are similar without being so similar that they are measuring the same underlying phenomenon. The highest magnitude of correlation was between the OTAS judgment subscale and the FWE performance subscale (r = 0.71). The correlation of least magnitude, while still significant, was between the OTAS judgment subscale and the FWE attitude subscale (r = 0.46). The only correlation that was not significant was between the OTAS time management scale and the FWE attitude scale (r = 0.29), indicating that “time management” is a construct separate from those measured on the FWE. See Table 2 for specific correlation values.

Analysis 1-4: Interrater Reliability

A κ statistic, a chance-corrected measure of how often two raters agreed on the overall score given to individual subjects, indicated 71% (fair) agreement. PHASE II

Analysis 2-1. Reliability

Cronbach’s α correlations on the revised and final OTAS continued to be strong (Table 1). α for judgment/clinical
TABLE 2. Phase I External Construct Validity Results: The Correlation Matrix of the OTAS and FWE

<table>
<thead>
<tr>
<th></th>
<th>OTAS Judgment</th>
<th>OTAS Professional Communication</th>
<th>OTAS Time Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWE performance</td>
<td>0.71*</td>
<td>0.62*</td>
<td>0.57*</td>
</tr>
<tr>
<td>FWE judgment</td>
<td>0.69*</td>
<td>0.67*</td>
<td>0.53*</td>
</tr>
<tr>
<td>FWE attitude</td>
<td>0.46†</td>
<td>0.65*</td>
<td>0.29</td>
</tr>
</tbody>
</table>

FWE = Fieldwork Evaluation.
*p < 0.0001.
†p = 0.0005.

reasoning remained the same as the phase I result (0.94), a for professional communication and time management increased from 0.94 to 0.96 and from 0.86 to 0.91, respectively.

Analysis 2-2: Test-Retest Reliability

Pearson correlations results for test-retest reliability were r = 0.81 for judgment/clinical reasoning, r = 0.81 for professional communication, and r = 0.82 for time management, all of which are considered strong. Paired t test results found the test and retest scores to be significantly different for all three scales: judgment/clinical reasoning (p < 0.0001), professional communication (p = 0.003), and time management (p < 0.0001).

Analysis 2-3: Content and Consequential Aspects of Construct Validity

In response to the question, "If you had an opening at your facility, would you hire this student?" 78% (33 students) of the students who passed would also be hired by the fieldwork site (true positive), 7% (three students) failed and would not be hired by the site (true negative), 11% (five students) passed but would not have been hired (false positive), and 4% (two students) did not pass but would have been hired (false negative) (Figure 1). The sensitivity of the OTAS was 0.94, suggesting the OTAS is able to positively identify OT students who will be hired, versus a specificity of 0.34, suggesting the OTAS is not able to identify the students who would not be hired. In a subsequent analysis, it was determined that seven OT students included in the sample were rated at two different fieldwork sites by two different clinical educators; six would have been hired by both supervisors. The one OT student who would not have been hired by either supervisor received a "pass" score from both supervisors on the total OTAS score and on each of the subtests.

Discussion

The OTAS was developed as a systematic, valid, and reliable tool for use as both a formative and a summative assessment of OT student professional behavior. The purpose of this study was to test the reliability and validity of use of the OTAS as a summative assessment during level II fieldwork. The OTAS builds on previous assessments such as the Philadelphia Region Fieldwork Consortium developed by Koenig et al.23 and the Professional Development Assessment developed by Kase et al.30,11 The OTAS differs from the Philadelphia Region Fieldwork Consortium in that the Philadelphia Region Fieldwork Consortium was developed for level I fieldwork; the OTAS is likely to be too lengthy and require more detail than a clinical educator may have the opportunity to observe during the shorter level I fieldwork. The OTAS differs from the Professional Development Assessment in that the Professional Development Assessment was deemed a valid and reliable assessment of OT student professional behaviors during academic education, whereas the OTAS was developed, at least initially, for use during level II fieldwork.

There were several issues encountered when testing the reliability and validity of the OTAS. One was the request by participating clinical educators for better rating descriptors. The rating descriptors selected for the phase I pilot OTAS were failure, unacceptable, marginal, adequate, good, and superior (similar to the FWE descriptors of poor, fair, good, very good, and excellent). Participating clinical educators believed that better discrimination between good and superior was needed. This request was likely related to the finding that PT students tend to be a negatively skewed population.4 This skew is a result of the academic entry requirement typically requiring a grade point average that is higher than the mean (i.e., 3.0 vs. 2.0) (see Figure 2). Thus, it could be expected that PT and OT student clinical performance, like their academic performance, was in the above average rather than in the average range, forming the basis for the clinical educator request for better discrimination between good and superior. The revised and final version of OTAS addressed this request by using rating descriptors worded in familiar practice-oriented and client-centered

Would you hire this student?

<table>
<thead>
<tr>
<th>Grade</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>FAIL</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

FIGURE 1. Phase II content and construct validity

OTAS Journal of Allied Health, Winter 2007, Volume 36, Number 4
terminology: unacceptable, below entry level, at entry level, above entry level, and superior. In fact, the request for better discriminating rating descriptors prompted OTAS developers to rethink the purpose of a level II fieldwork assessment, consequently shifting the perceived outcome of the OTAS from a measure of goodness to a measure of entry-level skill. The pilot descriptors asked, "How good is this student?" The revised and final OTAS descriptors asked, "Is this student ready for employment?" However, this last question may pose a problem for students on their first level II fieldwork because clinical educators may have varied opinions on how close to entry level an OT student should be at the end of their first level II fieldwork.

A second and related issue was the measurement of interrater reliability in phase I and resulting 21% (fair) agreement using the k statistic test. There were several limitations to the measurement of interrater reliability. The raters were not all occupational therapists. Rather, the raters represented the team. More than half of the second raters were occupational therapists; the remaining raters were certified occupational therapy assistants, physical therapists, or speech-language pathologists. Nineteen percent of the second raters did not indicate their discipline. Future studies should consider using a more homogeneous sample of raters (i.e., all occupational therapists), which may increase percent of agreement. An additional limitation of the test of interrater reliability conducted in phase I was the raters were not necessarily rating the same behaviors. To achieve this, the 12-week fieldwork would have had to be videotaped. Rating the videotape would ensure the same behavior was being rated. Finally, when behavior is observed over time, measurement errors can arise from many sources (i.e., changes within the student, the evaluator, the use of the instrument, and the environment).24

Phase II took a different approach to validity. Rather than using interrater reliability to measure consistency in behavior among raters, test-retest was used to test consistency in behavior per rater. Although the test-retest reliability correlation values were considered strong ($r = 0.81$ to 0.82), paired t test results found the test and retest scores to be significantly different for the judgment, professional communication, and time management OTAS subscales. This means that even when the same person was scoring the OTAS, the scores between the first and second test were significantly different. A limitation of using the test-retest method was students were in the process of developing professional behaviors during the fieldwork; therefore, it would be expected to see some improvement (increase in score) between the first and second administration even though they were only one to two weeks apart. In examination of the raw scores, this is exactly what occurred. For judgments, clinical reasoning, six of the scores remained the same between test 1 and test 2, 34 increased, and four decreased, and for professional communication, seven of the scores remained the same, 29 increased, and eight decreased. For time management, five of the scores remained the same, 35 increased, and four decreased. Of the 43 participating supervisors, only three scored the first and second test identically. Future studies should consider having the rater score the two tests at a closer interval (e.g., two successive Mondays).
An unexpected result was that the strongest OTAS–FWE correlation was between the OTAS judgment and the FWE performance scales (r = 0.71). The authors expected the higher correlation to be between the OTAS judgment and the FWE judgment scales (r = 0.69), although the difference in the correlations of the two scales was r = 0.02 (0.71 - 0.69). Upon review, there are some items on the OTAS (see Appendix, online) that could be considered performance, such as item 4 (“prepared for treatment”) and item 5 (“plans and adjusts treatment”). However, items 4 and 5 did factor, with a correlation of at least r = 0.60, with items such as item 8 (“switches gears when stuck”) and item 13 (“displays creativity and resourcefulness”). The OTAS professional communication scale was moderately correlated with the FWE judgment (r = 0.67), attitude (r = 0.65), and performance (r = 0.62) scales.

To ensure that the correlations between the FWE and the OTAS were not inflated by the potential ceiling effect of scores on both the OTAS and the FWE, secondary analyses were performed where the highest obtainable scores were removed. Removing the perfect scores increased the correlation between the OTAS and the FWE from r = 0.74 to r = 0.97. There were three scores that were the highest obtainable on the FWE and one on the OTAS. The correlation remained at r = 0.97 when scores within one and two points of the highest score obtainable were removed, that is, a total of six FWE items and three OTAS items were excluded.

Another unexpected result was the distribution of scores on the FWE subscales, that is, the mean FWE percentiles were 83% for performance, 84% for judgment, and 90% for attitude. This distribution is in contrast to the concerns expressed by South Texas clinical educators during the concept phase of the OTAS, which identified attitude as the most problematic OT student behavior and thus the area in which they, as clinical educators, needed the most help. It is also possible that while addressing attitude was difficult for clinical educators, overall, OT students were doing well in this area.

The phase I pilot OTAS form had room for comments from participating clinical educators. The comments fell into four categories. Recurring “strength” themes were (1) the OTAS was user friendly for the raters and (2) it provided a means for supervisors to help students build professional character. Recurring “weakness” themes were (1) general dissatisfaction with the evaluative descriptors and (2) lack of space for comments. The first weakness was addressed by changing the OTAS rating descriptors, as described earlier in this report. The second weakness was addressed by providing more space for comments in the revised and final OTAS.

Future studies could compare OTAS scores for first versus successive level II fieldworks because student confidence has been found to increase significantly during each fieldwork placement. The OTAS and the Student Confidence Questionnaire could be administered currently to determine if there is a correlation between self-confidence and appropriate professional behavior. Future studies could also assess the development of professional behavior across practice settings (i.e., physical disabilities, pediatrics, psychosocial, community, alternative practice, and so on). Future studies should look at the reliability and validity of using the OTAS formatively during academic education to increase OT students’ understanding of what professional behaviors are expected and, as needed, OT students preparing their fieldwork during the development of the OTAS reported they were not aware of expected professional behaviors until level II fieldwork and expressed the need for expectations to be presented earlier. OT students speculated that use of the OTAS would lead to a better understanding of the nature of student-supervisor interaction, help them develop their identity in their professional roles, and leave them better prepared to be clinical educators, a role that OT students are eligible for after one year of employment.

Conclusions

The coach directs mastery of skill; the student has little role in directing what is taught. The educator guides the student through reflective thinking; the student has equal responsibility for directing his or her learning. The OT fieldwork educator must be both an educator and a coach. Providing timely, constructive feedback and providing open communication and guidance are important aspects of the student-supervision. The OTAS was developed to facilitate this feedback, communication, and guidance. The results of this study indicate the OTAS is a valid and reliable measure of the professional behavior of OT students during level II fieldwork.

The authors thank Sarah White-Cantu and Dana Blahutar, the occupational therapists who inspired this project; the OT students and fieldwork supervisors whose participation made this project possible; the academic coordinators who found time in their busy schedules to provide help with databases and mailouts, including Kim Vogel (University of Texas Health Science Center at San Antonio), Sherrill Hamish (Texas Woman’s University), Ann Marie Knecht (Florida International University), Judy Bowen and Mark Hoffman (University of Texas Pan American), Linda McClain (University of New Mexico), Joan Rogers (University of Pittsburgh), and Linda Duncombe (Boston University); John Schoofield and Douglas Murphy (University of Texas Health Science Center at San Antonio) and Carol Baker (University of Pittsburgh) for the statistical and research design support; Marsha McGlasson for secretarial support; and the clinical educators in South Texas who supported and participated in the development of the OTAS.

Appendix I is available in the online version of this paper at http://www.ingenioconnect.com/content/esbhp/jsh. See Volume 36, No 4, Winter 2007.
REFERENCES

